
Jauv ane C. de Oliv eira
jauvane@acm.org
University of Ottawa

School of Information Technology
and Engineering
DIStributed & COllaborative Virtual

Environments Research
(DISCOVER) Laboratory
800 King Edward Ave. Room 5-077

Ottawa, ON K1N 6N5
Canada
Military Institute of Engineering

Department of Systems Engineering
Pça. General Tibúrcio, 80
Rio de Janeiro, RJ 22290-270

Brazil
National Laboratory for Scienti�c
Computation

Computer Science Department
ComCiDis Research Group
Av. Getúlio Vargas, 333

Petrópolis, RJ 25651-075
Brazil

Nicolas D. Georganas
georgana@discover.uottawa.ca
University of Ottawa

School of Information Technology
and Engineering
DIStributed & COllaborative Virtual

Environments Research
(DISCOVER) Laboratory
800 King Edward Ave. Room 5-077

Ottawa, ON K1N 6N5
Canada

Presence, Vol. 12, No. 6, December 2003, 555–580

© 2004 by the Massachusetts Institute of Technology

VELVET: An Adaptiv e Hybrid
Architecture for VEry Large
Virtual Env ironmenTs

A bstract

Collaborative virtual environment (CVE) concepts have been used in many systems

in the past few years. Applications of such technology range from military combat

simulations to various civilian commercial applications. The architectures available

today provide support for a number of users, but they fail if too many users are

together in a small “space” in the virtual world. This paper introduces VELVET, an

adaptive hybrid architecture that allows a greater number of users to interact

through a CVE. This is accomplished through an adaptive �ltering scheme based on

multicasting. VELVET also supports small groups of users, but its use in large envi-

ronments shows the greatest potential, better handling local concentrations of activ-

ity than region-, cell-, or locale-based approaches. VELVET introduces a novel adap-

tive area of interest management that supports heterogeneity amongst the various

participants. This allows users in a supercomputer with high-speed networking to

successfully collaborate with others in not-so-powerful systems behind a slow

dial-up connection.

1 Introd uct ion

Over the past few years, a number of interactive virtual reality (VR) sys-
tems have been developed. A collaborative virtual environment (CVE) is a spe-
cial case of a VR system wherein the emphasis is more on collaboration among
users rather than on simulation. CVEs are used for applications such as collab-
orative design (Daily et al., 2000; Hindmarsh, Fraser, Heath, Benford, &
Greenhalgh, 2000; Wang, Wong, Shen, & Lang, 2002), training (Oliveira,
Shen, & Georganas, 2000; Oliveira, Hosseini, et al., 2000; Kirner et al.,
2001), software engineering (Fernando, Murray, Tan, & Wilmalartne, 1999;
Doppke, Heimbigner, & Wolf, 1998), and telepresence, and many more appli-
cations are showing up daily.

Many of the applications may potentially have a very large number of users
at a time, and that can easily overload a fast network as well as impose huge
processing requirements at the stations. As computing resources are limited,
obvious problems arise once the number of users in a simulation increases be-
yond a certain limit. In fact, if no special mechanisms are provided, one may
expect a simulation to produce undesirable effects such as choppy rendering
and loss of interactivity. Another problem that a CVE faces is that of heteroge-
neity of hardware available for users. This also imposes some limitations to a
CVE as users in very powerful systems and fast networks would need to collab-

de Oliveira and Georganas 555

orate with others with very limited hardware and slower
networking. It is obvious that the second type of system
should not be required to deal with the same load as the
�rst. The easiest way to control such problems is by de-
ploying the simulation based on the slowest and weakest
system or setting up a minimum requirement and sim-
ply denying access to nonconforming systems. The �rst
approach, although guaranteeing functionality and
availability, would greatly underutilize better systems;
yet worse, more-limited systems may join the session at
any time. The second approach denies access to a poten-
tially large number of users and may still lead to under-
utilization of some systems.

We have designed and implemented a number of
CVEs for industrial training and electronic commerce
(Oliveira, Shen, et al., 2000; Oliveira, Hosseini, et al.,
2000; Oliveira, Shirmohammadi, & Georganas, 1999).
Such CVEs, although allowing rich collaboration, did
not provide the means for handling a large number of
users. In such prototypes, all users are aware of (and
receive updates from) every other object in the virtual
world, a situation that does not scale well.

In this paper, we present VELVET, an adaptive hy-
brid architecture for VEry Large Virtual EnvironmenTs.
VELVET addresses the aforementioned issues, allowing
a very large number of users to participate in a CVE
while allowing users with heterogeneous hardware and
available networking to collaborate in a best-effort ap-
proach. Such adaptive �ltering is performed through
multicasting.

In section 2, we introduce related work. Section 3
introduces VELVET, its design, and its functionality.
Section 4 presents simulation results, and section 5 a
performance comparison with other architectures, fol-
lowed by a conclusion.

2 R elated Work

A number of standards and prototypes have ad-
dressed the issue of allowing a larger number of users
to collaborate through a CVE. In this section, we will
introduce several of them, namely SIMNET, DIS,
NPSNET-IV, SPLINE, MASSIVE-2, SCORE, and the

architecture proposed by Abrams (Abrams, Watsen, &
Zyda, 1998; Abrams, 1999), which somewhat represent
the other models as well.

2 .1 DIS and SIMNET

DIS (distributed interactive simulation) is a stan-
dard (IEEE, 1993) that focuses on military simulations
and has been created as an improvement of SIMNET.
SIMNET (simulator network) has been one of the very
�rst standards developed for military simulations. It was
developed by ARPA and the U.S. Army by Bolt Beranek
and Newman, Perceptronics, and Delta Graphics
(Macedonia, 1995). SIMNET has been developed to
take full advantage of ethernet hardware when broad-
casting is heavily used, reducing software selection of
packets; however, this also brings undesirable depen-
dency on ethernet facilities that are �t for only a LAN.
SIMNET has no central object repository; that is, each
host is responsible for maintaining its own copy of the
objects participating in the simulation. Stations partici-
pating in a simulation exchange only state messages
with the others, and dead reckoning is used to reduce
communication requirements, which will be discussed
shortly.

DIS (IEEE 1278) has been developed in an attempt
to overcome SIMNET limitations. It is a group of stan-
dards developed by the U.S. Department of Defense
and industry. DIS uses similar protocol data units
(PDUs) as SIMNET, as well as its terminology and
some of its functionality, such as dead reckoning. Dead
reckoning is implemented by the idea of player and
ghost (Macedonia, 1995), when each object is con-
trolled by a unique station (its owner) and by a player
object. Such an object is present on all other stations as
a ghost object. The ghost object is supposed to mirror
the actions of the player in each station; however, no
state updates are sent all the time, but instead the ghost
tries to predict the motion of the player. The player also
calculates such predictions using the same algorithm.
When there is an error greater than a prede�ned thresh-
old, the player sends an update that is used to update
the ghost in every station. Such messages are used to
correct its position/state. This approach diminishes the

556 PRESENCE: VOLUME 12, NUMBER 6

scalability of DIS because all objects are mirrored in ev-
ery station. For example, in a 1,000-participant environ-
ment, each station would have to process at least 1,000
ghost objects (the player’s ghost has to be processed
locally as well) and a player.

DIS requires all objects to send periodic update mes-
sages even for the objects that do not move or are
“dead.”

2 .2 NPSNET-IV

NPSNET-IV (Macedonia, Zyda, Pratt, Barham, &
Zeswitz, 1994) is a prototype developed in 1995 at the
Department of Computer Science at the Naval Post-
graduate School in Monterey, California. NPSNET-I
and II were based on ethernet technology, which lim-
ited their use to LANs, hence with few stations. An en-
hanced version called NPSNETStealth was developed
complying with SIMNET, and, later on, NPSNET-IV
was designed to comply with DIS 2.0.3. NPSNET-IV
included enhancements such as the use of IP multicast
with dynamic multicast groups re�ecting a hexagonal
partition of the virtual world. This guarantees a constant
number (three) of hexagons to be added and deleted
when an object moves from one hexagon to an adjacent
one (Macedonia, 1995; Macedonia et al., 1994).
NPSNET-IV also implements the player/ghost paradigm
detailed in subsection 2.1 and, as with DIS, NPSNET’s
communication PDUs include military-oriented packets,
such as Fire PDU, Detonate PDU, and the like, which
makes it somewhat un�t for civilian applications.

NPSNET-IV achieves better results, compared with
DIS, mostly due to the lack of keep-alive heartbeat mes-
sages, as well as the partitioning of the world, which
ensures that at a given time only a few hexagons (seven)
need to be dealt with. Each hexagon has its own multi-
cast group, and data are sent through the multicast ad-
dress of the hexagon where the source of such data �ow
is located. Figure 1 shows the hexagonal partitioning of
the world with an avatar moving from one area to the
neighborhood. The avatar will unsubscribe the multicast
groups for the three hexagons to its left and subscribe
the new set of three multicast groups de�ned by the
three hexagons to the right.

2 .3 Open Communit y and SPLINE

Open Community (OC) (Barrus, Waters, &
Anderson, 1996) is a proposal of a standard for multi-
user enabling technologies from Mitsubishi Electric Re-
search Laboratories. SPLINE (scalable platform for
large interactive networked environments) is an OC-
compliant implementation that provides development
APIs. Such libraries provide very detailed and essential
services for real-time multiuser cooperative applications.
For its communication, SPLINE uses the interactive
sharing transfer protocol (ISTP) (Waters, Anderson, &
Schwenke, 1997), which is a hybrid protocol supporting
many modes of transport for VR data and information
through �ve subprotocols, namely 1-1 connection; ob-
ject state transmission, streaming audio, locale-based
communications, and content-based communication
subprotocols.

SPLINE partitions the world model in locales, which
may have any shape. In this sense, NPSNET’s partition
could be considered as a particular case of locales where
the division follows the rule of hexagonal partitions.
Once a user joins a given locale, everything that is lo-
cated in that locale, as well as the locales within its im-
mediate neighborhood, would be visible. It is possible
to be “present” in more than one locale by using spOb-
server objects. Internally, a spObserver object makes the
local OC engine listen to the multicast group of that
locale (and its neighborhood).

Figure 1. Moving through hexagons in NPSNET-IV.

de Oliveira and Georganas 557

SPLINE will behave differently depending on how
the world model is partitioned in locales. Figure 2 shows
a world model partitioned in two different ways, and
one can see that the partition to the right allows a user
to receive information from relevant locales only.

2 .4 MASSIVE-2

MASSIVE-2 (model, architecture and system for
spatial interaction in virtual environments) (Greenhalgh,
1997; Greenhalgh & Benford, 1999) is a prototype de-
veloped in 1997 at the Computer Science Department
at the University of Nottingham.

The major contribution of MASSIVE-2 is the intro-
duction of the third-party objects, which allows a hierar-
chical dynamic space-based embodiment of multicast
groups (Greenhalgh, 1996). The idea behind third-
party objects is to allow a group of artifacts (called
crowd) to be represented as a unique object that is seen
by others. When an artifact gets into a crowd boundary,
it will receive information regarding individuals within
the crowd. This model allows an elaborate hierarchy of
groups, as a crowd may be composed of artifacts and
other crowds, recursively. Such an approach requires
that media mixing be performed to provide a single au-
dio channel, for instance, representative of the whole
group. This processing may be prohibitive by itself, if
we consider that each nested crowd would require a
station to process its media (not only audio) to give a
representation of the group.

2 .5 SCOR E

SCORE (Lety, Turletti, & Bacelli, 1999; Lety,
2000) was developed in 2000 at INRIA, Sophia Antipo-

lis, France. It is based on the division of the world in
cells as suggested by Hook, Rak, and Calvin (1994). A
user interacts with those cells, which fall, at least par-
tially, within an “area of interest,” which is de�ned as a
square region around a user’s avatar. Each cell has its
own multicast group (MG), and an avatar then sub-
scribes to that set of MGs. SCORE allows for two poli-
cies regarding determination of cell size: precalculation
of a �xed cell size and dynamic re-estimation of the cell
size during the session. The dynamic estimation may be
performed based on some prede�ned parameters, such
as number of MGs available, density of participants, and
so on. Furthermore, SCORE allows the partitioning of
the world to have cells of different size, which allows
one to have a �ne grid at highly populated areas and a
sparse grid of cells in unpopulated areas, as shown in
Figure 3.

2 .6 How ard Ab rams’ A rch it ecture

Abrams has proposed (Abrams et al., 1998;
Abrams, 1999) a three-tiered management scheme for
LSVE. In such architecture, the �rst tier is quite similar

Figure 2. Partitioning a world model in locales.

Figure 3. Cells in SCORE.

558 PRESENCE: VOLUME 12, NUMBER 6

to that used in SCORE, in the sense that the space is
partitioned into regions that can be split into smaller
regions in the event of concentration of users in a single
region. The regions are organized in an octree so that,
when a region is split into smaller pieces, some new
leaves are added to the tree. The architecture allows for
a user to limit the number of leaf nodes processed based
on a “minimum region size.” The idea is that, if a given
region, once split into smaller pieces, is smaller than a
minimum region size threshold, the user’s system need
not subscribe to the smaller regions, sticking to the
larger region, which is located up from the leaves in the
tree. The second tier is a per-entity, protocol-independent
�ltering mechanism, in which case one given user may
select a subset of those objects that have passed through
the �rst tier to further discard uninteresting content.
The third tier is protocol dependent, which allows �lter-
ing of portions of the data broadcasted (multicasted in
fact) by a given object (that is, just those protocols that
are of interest).

3 The Prop osed VELVET Architecture

VELVET is our adaptive hybrid architecture.
The approaches previously described, although ad-

dressing the issues of a large-scale virtual environment
(LSVE), all fail under certain circumstances. In subsec-
tion 3.1, we will examine such failure potentials. In sub-
section 3.2, we will present the VELVET approach in a
high-level overview, whereas subsection 3.3 will provide
details on how the functionality described in the previ-
ous subsection actually works. We will show that VEL-
VET clearly performs better than other approaches, un-
der the circumstances discussed in subsection 3.1.

3 .1 Limitat ion of Ex ist ing Models

We may assume that SPLINE represents other
models such as NPSNET-IV and others based on geo-
graphical partitioning of the virtual world (Singhal &
Zyda, 1999; Frécon & Stenius, 1998; Hagsand, 1996;
Diot & Gautier, 1999). In both cases, the virtual world
is partitioned, and each user is supposed to receive data
from objects that are located in a well-de�ned subset of
the partition (or locales for SPLINE).

Locale-based models assume that users are somewhat
uniformly dispersed in the virtual world (Figure 4a).
That is, the idea of reducing the amount of data that
each station must deal with is addressed by reducing the
area that is “seen” by each participant. This would as-
sume that, by reducing the area dealt with, the number

Figure 4. Space-based solutions and their limitations.

de Oliveira and Georganas 559

of visible users would equally be reduced. If, however,
most (or all) users are packed together in a small area of
the LSVE, the number of objects a given user must deal
with may still be too large (Figure 4b). Suppose we have
a virtual museum in which some thousands of users are
visiting. If all of them decide to see the “Mona Lisa,”
one may notice that all stations would have to deal with
all the thousands of data �ows, as all of them would be
in the same locale (or in the neighborhood). The locale-
based approach would hence fail in the task of reducing
the amount of data that each host must deal with in such a
case. Other examples would be a virtual city, if the mayor
calls for a meeting in a central park, or if many users wish
to watch a soccer game in a virtual stadium.

Another limitation not quite addressed by existing
architectures is that of heterogeneity. Let us consider a
group of three hundred hosts participating in a CVE.
Yet, let us assume that 290 of these systems are quite
powerful, meaning that they can easily deal with the
load, even if messages from every station successfully
arrive. Such systems could also have very good network-
ing connections that could support such a load grace-
fully. The remaining ten stations, however, could be
assumed to be weak enough not to be able to deal with
the load. Space-based solutions tend to assign an equiv-
alent load to all systems populating the same neighbor-
hood. That would work well only if all systems are able
to deal with the same load, which is not true in our ex-
ample. The workaround in this case is that either all sys-
tems would have to meet a minimum performance or all
systems would have to reduce data transmitted so that
the weakest of the systems could support the load. Both
solutions are somewhat inadequate because the �rst pre-
vents some users from joining the CVE session, and the
second would under-use resources.

With regard to the architecture proposed by Abrams
(Abrams et al., 1998; Abrams, 1999), we will discuss it
in section 5, once the reader gets to know our proposed
VELVET architecture.

3 .2 VELVET’s Architecture

VELVET aims at allowing each and every user to
interact with the virtual world to the maximum extent

possible (or optionally as much as “paid” for). We will
�rst introduce VELVET’s terminology:

c world: the whole set of objects
c area or locale: a subdivision of the world
c object: an object that is located within the world
c avatar: special kind of object that represents a user
c bot: active object that is not an avatar
c artifact: an object that is neither avatar nor bot
c area of interest (AoI): the radius a user is able to

view and directly interact with.
c check in: operation that brings an object into a us-

er’s AoI
c check out: operation that removes an object from a

user’s AoI

VELVET is a CVE architecture that allows real-time
adaptation, according to the local client needs. At any
point in time, a given user may elect to unilaterally re-
duce or increase his/her own view of the world. VEL-
VET gracefully supports heterogeneous collaboration.
Such a feature allows systems with different processing
power and networking facilities to still collaborate ef�-
ciently because each one may elect to see just as much
as possible (or as much as “paid” for).

In subsection 3.2.1, we discuss the AoI in general
terms. That is followed by the double layered bound-
aries, the parallel virtual world (PVW), and �nally the
support of heterogeneity in VELVET. Using the knowl-
edge of the PVW, we will revisit the AoI management
in VELVET, as that can be better de�ned in terms of
the PVW.

3.2.1 Area of Interest Management. The idea
behind VELVET is that each avatar will be able to “see”
whatever is located within its AoI. The AoI of a given
avatar does not depend on another avatar’s AoI. Such
behavior allows for each station to manage how large its
own AoI is, hence how much of the world can be seen
at a time. The AoI can be enlarged and reduced dynam-
ically so that, upon increase in load, by a higher density
of objects around an avatar for instance, one can auto-
matically reduce the AoI so that the load can be kept
within treatable range. Figure 5 shows a group of ava-
tars in a room with one avatar, indicated by the arrow

560 PRESENCE: VOLUME 12, NUMBER 6

(A). One can then see a larger number of avatars (B),
which makes the AoI shrink (C) as needed. Only the
objects that are within the AoI are visible, and only in-
formation from those objects is received.

Whenever the number of objects decreases, that same
avatar may have its AoI expanded so that more objects
may again be visible. That is shown in Figure 6. If we
let B be the average bandwidth transmitted by a partici-
pant, PA be the number of participants a user is aware
of, and PI be the number of participants a user is actu-
ally interested in, we can express incoming bandwidth
for space-based solutions as B 3 PA and for VELVET as
B 3 PI, where 0 # PI # PA. A more formal description
of AoI management is shown in subsection 3.2.5.

3.2.2 Double Layered Boundaries of VEL-
VET’s AoI. Additionally, when an object crosses the
border of the AoI, it will check in (CI) or check out

(CO), depending on the direction being towards the
AoI or leaving the AoI, respectively. To avoid multiple
CI/CO operations, VELVET in fact de�nes two bor-
ders named area of interest check in (AICI) and area of
interest check out (AICO), so that only objects crossing
AICI will check in and those crossing AICO will check
out. The “distance” between AICI and AICO is also
variable and may be used to control the number of
CI/CO operations. Figure 7 (top) shows an example of
use of AICI/AICO. Figure 7a, b, and c shows an AoI
with a single border (or AICI and AICO with distance
zero), and two different distances between AICI and
AICO, respectively. One can notice the arrows display-
ing thirteen, seven, and �ve CI/CO operations for the
same path.

If we de�ne the following parameters,

c pi 5 the radius of inner boundary of AoIi;

Figure 5. VELVET’s area of interest shrinking

Figure 6. VELVET’s area of interest expanding

de Oliveira and Georganas 561

c qi 5 the radius of outer boundary of AoIi;
c qi, max 5 the max of qi;
c qi, init 5 the initial size of qi;
c s 5 qi 2 pi;
c n 5 the allowable max number for checking of

boundary collision;
c t 5 a limited time slice for checking of boundary

collision; and
c c 5 number of boundary collisions during t,

we can de�ne the procedure for AICI/AICO manage-
ment as follows:

while (1)
$

if ~~c . n! && ~qi # qi,max! && timeout! increase qi;
if ~~c # n! && ~qi . qi,init! && timeout! decrease qi;

}

where timeout is the minimum time that shall elapse
before changes in the AICI/AICO, which prevents too
many changes from happening in a short time interval.
Such a time interval can be set, for instance, at 1 sec.
Please note that this procedure is to be performed lo-

cally, with absolutely no dependency on any other par-
ticipant.

As per the AoI’s rule for expansion/shrinking, we
shall add that it is not necessarily based on virtual space
(distance) from the avatar but rather based on a pre-
de�ned metric in use by that user’s VELVET manage-
ment subsystem. That is, one can see what is more im-
portant to him/her rather than what is geometrically
closer, as Figures 5 and 6 somewhat indicate. We can
assume that the positioning of the avatars in Figures 5
and 6 are based on such a metric rather than on the vir-
tual distance to the avatar. Of course, the metric itself
could be that of virtual distance.

3.2.3 Parallel Virtual World of VELVET. The
metric de�nes a parallel virtual world (PVW) in which
objects are placed according to the metric chosen by
each participant. Figure 8 shows the PVW.

The rings de�ne levels in the metric-oriented PVW.
Each avatar has its own PVW, and the management
subsystem decides how many of the rings shown in Fig-
ure 8 will be subscribed to. Note that, as each avatar has

Figure 7. VELVET’s AICI/AICO: (a) single layer (13); (b) double layer (7); (c) wider double

layer (5).

562 PRESENCE: VOLUME 12, NUMBER 6

its own PVW, the rings can be particularly arranged
based on each participant’s interest; for instance, each
ring may have a single object or a collection of those.

Let MS be a set of metrics, MS 5 {M0, M1, . . . , Mm},
where

M0 5 Metric 1, such as number of users
M1 5 Metric 2, such as network bandwidth
M2 5 Metric 3, such as distance in the virtual world
M3 5 Metric 4, such as distance in the network

(number of hops)
M4 5 Metric 5, such as distance in number of locale hops
M5 5 Metric 6, such as average end-to-end delay
M6 5 Metric 7, such as a mix of the above,

such as M4 p 10000 1 M1
···
Mm 5 metric m 1 1, such as others

Assume that in VELVET an avatar Ai has its own paral-
lel virtual world (PVWi) with a metric Mg at a given
time t:

PVW i(Mg)5{R0, R1, . . . , R l21}

where Mg { MS,
Rk is (k 1 1)th level of the metric Mg,

0 # g # m, and
l is the number of levels in the current PVWi,
where R l21 is the maximum level of Mg.

The AoI will be such that it will include Rk, 0 , k , l,
so that On50

j j(Rn) # T # On50
k j(Rn), where j(Rn) is a

function that gives the cost associated with the level Rn,
such as the number of participants in level n for a metric
considering the number of users. T is a value that will
be optimized according to a prede�ned target value for
a given metric. For instance, if one is behind a 56K mo-
dem connection and the metric considered is total
bandwidth, the target could be something like 48Kbps.
T would be maximized considering that it must remain
below this target. See subsection 3.3.3 for further de-
tails on the implementation of PVW in VELVET.

3.2.4 Degree of Blindness and Support to
Heterogeneous Systems in VELVET. Because par-
ticipants unilaterally decide which objects to subscribe
to, based on the PVW, one can notice that such behav-
ior can lead to inconsistencies. Such an inconsistency
shows up when a given avatar A “sees” an avatar B even
though B cannot “see” A. That would happen if A’s
AoI is expanded enough so that B is enclosed while B’s
AoI is shrunk enough not to enclose A. In VELVET
terminology, this is called degree of blindness, which lim-
its one’s vision. This is perfectly legal in VELVET. In
fact, it is the very reason why VELVET graciously sup-
ports collaboration among users in heterogeneous sys-
tems in a best-effort approach. Figure 9 illustrates this
behavior, which de�nes degree of blindness in VEL-
VET. The smaller the AoI, the greater the degree of
blindness. Figure 9 shows users A and B adopting simi-
lar metrics; the area around each avatar is that based on
the PVW rather than the Euclidean space.

De�ne (Ai , Aj) [ij as the distance between partici-
pant Ai and Aj in the PVW of participant Ai and ri the
radius of the AoI in participant Ai’s PVW, as shown in
Figure 10. We can de�ne that Ai , Aj N ji # rj that
is, if Ai is within Aj’s area of interest. Similarly, we can
de�ne that Ai . Aj N ij # ri. In other words Ai .

Aj N Aj is within Ai’s AoI, that is, if Ai can “see” Aj.
Considering space-based solutions, for two avatars Ai

and Aj within the same locale Ln, Ai . Aj N Aj . Ai

holds because ri 5 rj; @i, j and ij 5 ji; @i, j. In
VELVET, ij 5 ji may not necessarily hold, as after all
Ai and Aj may be using completely different metrics.

Figure 8. VELVET’s parallel virtual world

de Oliveira and Georganas 563

Furthermore, in VELVET, Ai . Aj does not lead to
Aj . Ai because the metrics can be different, and, in the
event that both participants use the same metric, ri Þ rj

may hold as well, which is the reason for the existence
of different degree of blindness for each user. This al-
lows heterogeneous systems to collaborate in a best-
effort approach that is, if one is participating in a

VELVET session with a processor-weak system or be-
hind a dial-up 56K modem, it would still be possible to
interact with a limited number of participants (high de-
gree of blindness). At the same time, another user join-
ing a VELVET session with a supercomputer with a
very fast networking connection would be able to inter-
act with a comprehensive view of the world (if desired).

Table 1 shows some , and the equivalent . relations
of VELVET in the event that both Aj and Ai use the
same metric Md.

From Table 1, we can deduct relations such as, if
Ai , Aj and Aj ÷ Ai, then rj . ri.

Table 2 shows several relations supported by VEL-
VET, with the box showing the scope of space-based
solutions. This table assumes that both Aj and Ai use
the same metric Mk.

3.2.5 Area of Interest Management Revisited.
In this subsection, we detail how the AoI management
works, now in terms of the PVW. Subsection 3.2.1
brought a high-level overview of AoI, which could
shrink and expand. We now de�ne how that happens
based on the PVW of VELVET.

AoI management basically consists of managing the
AICO and AICI, which automatically de�nes partici-
pants to be subscribed to or dropped by the AoI man-
agement thread in a VELVET-compliant system.

The AoI management in VELVET greatly depends
on the PVW, which was not clear in subsection 3.2.1.
Figure 8 shows a generic PVW with levels R0 to RL,
with RK and RJ the levels of AICO and AICI, respec-
tively, with 0 # J # K # L. Let us assume that the
PVW in question is that of participant Ai (PVWi), with-
out loss of generality. At any moment, if ij . rK, Aj

will check out (CO) from the PVWi, in the next cycle of

Figure 9. VELVET and degree of blindness

Figure 10. Parameters and r

Table 1. VELVET’s , and . Relations for Objects
with Similar Metrics

VELVET ji # rj ji . rj

ij # ri Aj , Ai, Ai , Aj Aj , Ai, Ai ÷ Aj

ij . ri Aj ÷ Ai, Ai , Aj Aj ÷ Ai, Ai ÷ Aj

564 PRESENCE: VOLUME 12, NUMBER 6

the AoI management thread (if it was checked in previ-
ously). This happens because Aj is by de�nition outside
the AoI of Ai. (See subsection 3.2.3.) On the other
hand, if ij , rj at a given time, Aj would check in (CI)
into the PVWi , in the next AoI management cycle (as-
suming that it was not checked in already).

Additionally, @a; J # a # K, if Aa , Ai at a given
time t 1 1 N Aa , Ai at time t. Similarly, @a; J # a #

K, if Aa ÷ Ai at a given time t 1 1 N Aa ÷ Ai at time
t; that is, if the object Aa is located between the AICI
and the AICO, it will keep the same CI/CO status it
had before.

If the AoI management detects too many CI/CO
operations it will act as follows:

c If the CI count is high, the AICI will get closer to
Ai (J 5 J 2 1), so that JK will increase and an ob-
ject will have to move farther towards Ai, in the
PVWi, before it checks in to the AoI of Ai. JK is
de�ned as the distance between the AICI at level J
and the AICO at level K.

c If the CO count is high, the AICO will move far-
ther away from Ai (K 5 K 1 1), so that JK will
increase and an object will have to move farther
away from Ai before checking out of the AoI of Ai.

Similarly, if the CI/CO count is low, the inverse proce-
dure may be used so that JK decreases.

If a user experiences overload based on the metric (or
other parameters, such as incoming traf�c, processing
power, or any other bottleneck), both levels J and K
(namely AICI and AICO) will be reduced, (K9 5 K 2 1
and J9 5 J 2 1). (See Figure 11a). That will immedi-
ately lead to CO operations @Aa so that ia . rK9 and
ia , rK, where K is the former level of the AICO and
K9 is the new shrunk level of the AICO. That is how the

AoI shrinks based on the PVW. Similarly if the AoI
management decides to expand the AoI, this is accom-
plished by increasing both AICI and AICO levels (Fig-
ure 11b), leading to CI operations for those objects that
were not within the AoI before the expansion and that
get enclosed after such expansion. More formally, there
will be CI operations @Aa so that ia , rj 9 and ia . rj,
where J is the former level of the AICI and J 9 is the new
shrunk level of the AICI.

It is important to note that the distances based on the
function are distances in the PVW of a given avatar,
and not distances in the Euclidean world. Remember
that a PVW is built based on a chosen metric, as de�ned
in subsection 3.2.3.

3 .3 Internal St ructures and
Funct ionality of VELVET

In VELVET, the world is partitioned into areas,
and each area has a multicast address as in SPLINE and
NPSNET-IV. VELVET accomplishes the �exible func-
tionality described in the previous subsection by assign-
ing a multicast group for each object that generates a
�ow of data (such as avatars and bots). This de�nes an
object transmission channel (OTC). Each client has
three threads running in parallel: the �rst thread is re-
sponsible for sending data through the network, the
second receives and acts upon arriving packets, and the
third thread performs management of AoI, joining and
leaving areas and OTCs as appropriate. Figure 12 shows
the way the receiver thread works. Each locale similarly
has its own locale transmission channel (LTC).

3.3.1. Awareness Control. In VELVET, a
given avatar Ai may enter or join locales L1, L2, . . . , Ln.

Table 2. Scope of VELVET and Space-Based Solutions Regarding , and . Relations

VELVET ri . rj ri 5 rj ri , rj

ij . ji N/A Aj , Ai f Ai , Aj Ai , Aj f Aj , Ai

ij 5 ji Aj , Ai f Ai , Aj Aj , Ai N Ai , Aj Ai , Aj f Aj , Ai

ij , ji Aj , Ai f Ai , Aj Aj , Ai f Ai , Aj N/A

de Oliveira and Georganas 565

Ai enters a locale if it physically moves into that locale.
Ai joins a locale if it happens to have interest in such
locale even though it is not physically in it. Once Ai en-
ters or joins a locale, it sends an appropriate message to
the communication channel of such locale. Every other

active object that is located within this locale sends an
INFORMLOCALE message back to Ai, which then
learns about such objects. Ai can then consider such
objects in the next cycle of the AoI management thread.
On the other hand, the other avatars receiving an

Figure 11. AoI shrinking (a) and expanding (b) based on the PVW.

566 PRESENCE: VOLUME 12, NUMBER 6

ENTERLOCALE message from Ai will become aware
of it and will consider it in the next cycle of the local
AoI management thread as well. An avatar sends a
LEAVELOCALE message once it is leaving a locale.
Such a message allows the others to remove it from the
list of participants of such locale.

Figure 13 depicts the procedure by which an avatar
A1 becomes aware of other active objects. In the �gure,
the shaded area represents the areas that the local user is
aware of. Initially, A1 enters a locale, such as L1 (Figure
13a). At this stage, A1 sends an ENTERLOCALE mes-
sage in L1’s communication channel. The message is
received by active objects that are located in L1, and
those then send an INFORMLOCALE message back to
A1, which then learns about such active objects. Simi-
larly, A2 has learned that A1 has just entered L1. Let us
suppose that the metric M1 that A1 is following is to
subscribe to the communication channels of no more
than 10 avatars. At stage B in Figure 13, only one avatar
is known to A1 (that being A2). As A1’s metric target is
larger than 1, it joins the next level (the �rst in this case)
of neighboring locales, namely L3 in Figure 13b/c. A1

then sends JOINLOCALE messages to L3 and receives
INFORMLOCALE replies from A3 and A4. Only three

objects—A2, A3, and A4—are known, which is still un-
der A1’s metric of M1. A1 goes on and subscribes to the
next level of neighboring locales, namely L4 and L5
(Figure 13c/d). This procedure goes on one step fur-
ther until when the metric M1 has been met or a suf�-
cient large number of locales has been subscribed to. At
stage E in Figure 13, A1 has awareness of 11 active us-
ers, which are then �ltered through the AoI manage-
ment thread, so that the parameter T described in sub-
section 3.2.3 is kept below the target selected (10 users
in the preceding example).

In the case of a very large number of users, an avatar
will likely have awareness of a single locale, with further
�ltering provided by the AoI management.

3.3.2. Data Transmission Control. Each object
is supposed to send data only on its own OTC, and only
those who have explicitly signed for such channel will
receive such data. This restriction ensures that no host
will ever receive unsolicited user data. Moreover, each
VELVET system can pinpoint exactly which users it
should be receiving data from, based on a given metric.
Table 3 shows the amount of super�uous data received
by participants in various architectures.

Figure 12. Receiver’s procedure.

de Oliveira and Georganas 567

VELVET is adaptive because each system may choose
to sign for a larger or smaller number of groups “on the
�y.” For instance, if a given system is connected to a
VELVET world and experiences network overload, it

may simply unilaterally shrink its own AoI (reducing its
T parameter), which immediately reduces the �ow of
data arriving at that end. Additionally, VELVET allows
a heterogeneous set of hosts to successfully collaborate

Figure 13. Awareness control in VELVET.

Table 3. Super�uous Data

MASSIVE-2 Transmission from objects in the appropriate areas that are of no interest
to the local participant.

SPLINE/NPSNET-IV Transmission from objects in the appropriate areas that are of no interest
to the local participant.

SCORE Transmission from objects in the appropriate areas that are of no interest
to the local participant, as well as objects that, even though not in the
area of interest, are located in cells that fall partially within the AoI.

VELVET Minimum super�uous data, based on metric.

568 PRESENCE: VOLUME 12, NUMBER 6

because each user can have his/her AoI reduced as
much as necessary to make it treatable while increasing
its degree of blindness, which would allow people in a
supercomputer as well as very limited systems to collab-
orate in a CVE session.

3.3.3. Data Structures. Figure 14 shows how
data are organized in a VELVET client. Everything
starts with a linked list of locales, each of which contains
a list of boundaries—that is, pointers to other locales
that are neighboring each locale—as well as a list of ac-
tive objects (such as avatars), which are located within
that locale. There is also a list of known avatars, (those
that the local user is aware of through the procedure
described previously (Figure 13)). Each known avatar
has a list of metrics that are initialized with values pro-
vided by each active object and updated with corrected
statistical values (such as average delays, jitter, and so
forth).

The list of avatars shown in Figure 14 is ordered ac-
cording to the metric currently in use by the local user.
One should note that all the information stored in these
structures is dynamically gathered, unilaterally, by the
local user.

3.3.4. Parallel Virtual World and Filtering of
Messages. Figure 15 shows how the PVW actually
works in light of the structures shown in Figure 14.
(The list shown in Figure 15 is just the avatars list from

Figure 14.) The idea is that such a list is ordered based
on the metric chosen. The levels R0, R1, . . . , Rl, are
de�ned based on the metric values known at the mo-
ment. For instance, if we consider that the metric cho-
sen is the bandwidth required by a given avatar, the lev-
els in the PVW could be set as 1 Kbps, 2 Kbps, . . . , a

Kbps, in which a would represent the maximum trans-
mission rate known at the moment. The active objects that
have transmission rates within the [0, R0] interval, namely
[0kbps, 1Kbps] would be in the �rst level of the PVW, and
so on. The AoI would be de�ned as the levels Rj and Rk,
respectively, for AICI and AICO. j and k are chosen so
that T, On50

j j(Rn) # T # On50
k j(Rn) is optimized and

kept under the target maximum metric as de�ned in sub-
section 3.2.1.

VELVET is a hybrid protocol because it builds on top
of existing locale-based systems. The area’s multicast
group (LTC) is used to send/receive only management
packets, such as ENTERLOCALE, JOINLOCALE, and
LEAVELOCALE (that is, packets that are related with
awareness management). The VELVET session manage-
ment entity will frequently analyze the structures shown
in Figures 14 and 15 based on their pro�le and will
choose which ones to sign up for or drop.

4 Modeling and Simulat ion

VELVET has been modeled using the OPNET
Modeler 6.0 PL12 (Mil3, Inc.). In this modeling, we
created a multicast-enabled router that allowed VEL-
VET to perform exactly as described in subsection 3.3.
Figure 16a shows the node model for a VELVET sta-
tion. The three main threads of the VELVET architec-
ture (transmitter, receiver, and management) are repre-
sented as three independent nodes. Figure 16b shows
the process model for the management node. This
model consists of a startup procedure, required due to
the DHCP server mentioned previously, followed by an
in�nite loop in which the thread wakes up every once in
a while (TIMEOUT) to analyze the current content of
the structures presented in Figure 14 and perform
changes that may be required. Such changes include

Figure 14. Internal data structures.

de Oliveira and Georganas 569

subscribing/dropping OTCs, joining/leaving locales,
and so forth.

The modeling of VELVET uses external con�gura-
tion �les that allow one to select the statistical behavior
of each station along with the geography of the VEL-
VET world. For most simulations, we used the world
shown in Figure 17 in which nine locales exist with well-
de�ned neighborhoods. Several stations were placed and
different pro�les were chosen.

To make the setup of the simulation even more con-
venient, we introduced a DHCP server in the simula-
tion. Each station requests this server to assign an IP
address for it at startup. This allows easy recon�guration
because it is possible to add many stations to the simula-
tion with no need for manual con�guration. This
DHCP setup leads to unnaturally high packet traf�c at
startup, but such high traf�c only occurs approximately
in the �rst 500 ms of the simulation. All packet ex-

Figure 15. PVW in the scope of internal structures of VELVET.

Figure 16. VELVET’s host node/process models.

570 PRESENCE: VOLUME 12, NUMBER 6

changes after this time interval are those of VELVET
management along with data packets sent by the several
stations.

Figure 18 shows the average number of packets re-
ceived by four stations selected in the network. Those
are four stations with pro�les to view one, �ve, nine,
and twelve stations, respectively. It is obvious to see that
the lines well separated in the graph represent a clear
relationship of the number of users a station chooses to
join and the number of packets received. The graph
does not show a station changing the metric on the �y
but, if the station with metric target set at 12 reduces its
metric target to 9, the AoI manager is led to drop four
stations. The number of packets would then fall from
110 to the 75 packets/second average experienced by
the station with metric target set at 9.

Figure 19 shows the results from thirteen stations.
One can see twelve somewhat well-de�ned data �ow
levels, which re�ect the fact that the hosts were set to
“see” from one to twelve stations. For this simulation,
all stations were sending packets according to an expo-
nential distribution with a mean outcome of 0.125 sec.
(average of eight packets per second). The probability of
an avatar changing a locale was set to 15%.

The graphs of Figures 18 and 19 show that VELVET
supports heterogeneity well because each station may
select a different level of service. This can be extended
for quality-of-service purposes wherein a user could stay
in the level most adequate according to paid fees (or

load in the network). Such levels could be, for instance,
those with metric targets set at 1, 5, 9, or 12 in Figure
18.

The simulation has also been executed in a two-area
world (Figure 20). In such a world, SPLINE would lead
to rendering all users populating the world because all
objects in the current locale, as well as the immediate
neighbor locales, are subscribed for. A given user would,
hence, receive packets from every active object in this
speci�c world. Figure 21 shows the performance of such
a simulation.

The station behaving like SPLINE matches with that
of the VELVET station, receiving information from all
hosts, averaging 115 packets per second, as shown in
Figure 21. In our two-locale world, SPLINE would re-
ceive packets from absolutely all objects within the
world. VELVET allows for �ltering even within a single
locale because the world is seen through the PVW for
the AoI management protocol of VELVET. If a given
avatar chooses to expand both AICI and AICO so that
they would coincide with the last level known, then all
objects would check into the AoI of the avatar. More
formally, if J 5 K 5 L so that JK 5 0 f ia # rJ, @a,
for an avatar Ai. In this special case, the avatar Ai in
VELVET would receive packets from every object as
well. For the other avatars, different values of rJ were
chosen, leading to the various levels shown in Fig-
ure 21.

It is worth mentioning that the high traf�c experi-
enced at the �rst 500 ms is initially due to the use of a
DHCP server, which had been introduced into the sim-
ulation to allow fast automatic con�guration of the sta-
tions. At the beginning of the simulation, all stations
request IP addresses from the DHCP server through
the use of broadcast packets. The response from the
server is also sent via broadcast, which increases the
number of incoming packets at startup.

This section has shown advantages of VELVET com-
pared with locale-based architectures, such as SPLINE
and NPSNET-IV. In fact, if one de�nes a metric in
VELVET as that of subscribing to all objects in the ava-
tar’s locale as well as the immediate neighbors, VELVET
would behave just like SPLINE; hence, locale-based ar-
chitectures can be thought of as a subset of VELVET.

Figure 17. Virtual world.

de Oliveira and Georganas 571

Figure 22 shows the results of a simulation with up to
209 users and 25 users’ increments. The line shown at
the top, varying from about 280 incoming packets per
second (when 34 users are in the virtual world) to ap-
proximately 1,600 incoming packets per second (when

209 users are within the virtual world), shows how
space-based solutions (such as SPLINE) behave when
the user population grows. VELVET, on the other
hand, stays stable between 70 and 100 incoming pack-
ets per second.

With 34 users, VELVET stations had incoming traf�c
between 40 and 70 packets per second, whereas space-
based solutions (SBS) had more than 275 incoming
packets per second (Figure 22a). When 59 users were in
the world, the results stayed almost identical for VEL-
VET at 45 to 75 packets per second, but SBS achieved
more than 475 packets per second (Figure 22b). SBS

Figure 18. Incoming traf�c : average throughput in packets/second.

Figure 19. Incoming traf�c : average throughput in packets/second.

Figure 20. A two-locale world.

572 PRESENCE: VOLUME 12, NUMBER 6

went further to approximately 690 packets per second
with 84 users (Figure 22c), 890 packets per second with
approximately 109 users (Figure 22d), and so on,
achieving more than 1,600 packets per second with 209
users (Figure 22h). In contrast, VELVET stations were
stable at around 100 packets per second (Figure 22a–h).

Figure 23 shows a better comparison of VELVET
versus SBS, using data gathered from simulation results
shown in Figure 22. In this graph, we selected the VEL-
VET station with the highest incoming throughput
(that is, that with the AoI more expanded among the
various VELVET stations in Figure 22). We can see that
this VELVET station keeps a relatively stable average
incoming packet count while SBS grow steadily.

These simulation results show how VELVET behaves
when compared with locale-based architectures. Such
results are somewhat obvious because VELVET, being a
superset, can behave exactly like SPLINE as well as al-
low a more aggressive �ltering of incoming data and
hence reducing incoming bandwidth. It is important to
mention that a VELVET station could have its AoI ex-
panded enough so that it could achieve the same packet
counts shown previously for SBS. For example, assume
user Ai has a metric that allows subscription to up to
250 other users. One advantage of VELVET is exactly
this �exibility, allowing users to unilaterally choose a
metric that is appropriate to their own needs.

5 Comparison Wit h Ot her Architectures

In this section, we are comparing VELVET with
other architectures, namely MASSIVE-2, SCORE, and
the architecture by Abrams (Abrams et al., 1998;
Abrams, 1999).

5 .1 MASSIVE-2

Greenhalgh presents studies (Greenhalgh, 1997)
of total bandwidth of MASSIVE-2 as a means of com-
parison with MASSIVE-1. In these studies, the follow-
ing parameters are used.

c IA: number of artifacts in the world
c IP: number of participants in the scope of interest
c S: average size of the state of an average object
c M number of times that an avatar changes its scope

of interest
c TS: average amount of time spent by a user in the

virtual environment
c BP: average bandwidth generated by a participant

Bandwidth is given as the number of packets sent by

each object in a given time, and
SIPM

TS
accounts for mul-

ticast announcement/state transfer of mobile users
(Greenhalgh, 1997). When an avatar changes its scope
of interest (such as when entering in a different room
with new content), all objects will need to be loaded;

hence, we should expect
S(IA1IP)M

TS
average bandwidth

due to the change of scope of interest. In addition to
that, we also expect IPBP, which accounts for data trans-
ferred by the various participants.

Using this approach regarding incoming bandwidth,
we can see that MASSIVE-2’s incoming bandwidth is
together given by

(IA12IP)
SM
TS

1 IPBP 5
IASM

TS
1 S2SM

TS
1 BPDIP. (1)

VELVET’s incoming traf�c is similarly given by

(IA 1 2I 9P)
SM
TS

1 I9PBP 5
IASM

TS 1 S2SM
TS 1 BPDI 9P, (2)

Figure 21. Incoming traf�c : average throughput in packets/second.

de Oliveira and Georganas 573

Figure 22. Incoming traf�c : average throughput in packets/second—comparison of VELVET (12 lower lines) vs. space-based solutions (upper

line).

574 PRESENCE: VOLUME 12, NUMBER 6

where 0 # I 9P # IP; that is, VELVET has the second
term of the �rst half of eq. (2), which is responsible for
incoming data such as audio, video, motion, and so on
in a range from 0 all the way up to the same IP that
MASSIVE-2 receives. If we assume that each participant
is on average interested in approximately 50% of objects
that he/she is aware of, it would lead VELVET to re-
ceive approximately 50% less data than MASSIVE-2. In
other words, VELVET’s users will not need to receive
data from 50% of the objects they are not interested in.

Additionally, MASSIVE-2 has quite an overhead,
which is not disclosed in the preceding expressions, that
has to do with the management of third-party objects.
(See subsection 2.4.) It should be remembered that
some entity will be responsible for the nontrivial task of
mixing the media of the objects, which are part of a
third-party object, so that the mixed medium is trans-
mitted at the level at which the third-party object is lo-
cated.

MASSIVE-1 (Greenhalgh & Benford, 1995) is an
architecture that focuses on small-group meetings,
which is why it has not been considered extensively.
MASSIVE-1 also uses unicast peer-to-peer distribution,
and such an architecture limits its usage to no more
than twenty users in a LAN at 10 Mbps (Greenhalgh,
Purbrick, & Snowdon, 2000). It did, however, make

use of the aura, foci, and nimbi concepts (Benford et al.,
1995). Aura, foci, and nimbi, which are also present in
MASSIVE-2 (Greenhalgh & Benford, 1999), can be
implemented through a metric within VELVET. MAS-
SIVE-3 (Greenhalgh et al., 2000) is an architecture that
has moved towards the locale model of SPLINE. It adds
the concept of “aspects,” which are subdivisions of a
locale, allowing the existence of multiple �delity repre-
sentation of objects as well as separation of objects that
are located in a single locale. Such architecture, being
space based, is represented by the other space-based
architectures analyzed.

5 .2 SCOR E

SCORE’s division of the world in cells brings
heavy management overhead. Imagine that a given area
of the world has a large number of users. SCORE
should try to reduce traf�c by increasing the number of
the cells into a �ne grid so that one can have a smaller
area of interest. It happens that, if the cells are small and
a given user is moving around, that user will need to
insistently subscribe for the new cell’s multicast groups,
as well as for leaving a number of them. Considering
that more than one user would be moving at a given
point in time, the number of join/leave multicast mes-

Figure 23. Comparison of VELVET vs. space-based solutions.

de Oliveira and Georganas 575

sages would grow to a signi�cant amount of bandwidth,
somewhat presenting the bandwidth problem again. In
VELVET, it is of no relevance if users are moving
around because the multicast groups that one subscribes
to are associated with the metric used and not the physi-
cal location of the objects. Only when a user crosses the
borders of a locale will it send an enter/leave locale mes-
sage (Figure 12).

Also, when SCORE decides to change sizes of cells,
there is identically a peak of multicast group manage-
ment messages sent by all users in the affected area.

Considering the situation in which SCORE has a �x-
sized cell grid de�ned at startup leads to something sim-
ilar to a locale-based world in which each locale is
smaller. Similar problems found in those worlds would
be observed, and the extra multicast group join/leave
issue would lead to higher management bandwidth than
standard locale-based solutions in which locales are usu-
ally larger.

5 .3 How ard Ab rams’s A rchitecture

Howard Abrams’s architecture (Abrams et al.,
1998; Abrams, 1999) shows greater �ltering capabilities
through its three-tiered �ltering mechanism, described
in subsection 2.6. This architecture is, however, still
space based. One may notice that the �rst tier, being
space based, is quite similar to SCORE (in fact, SCORE
is similar to the �rst tier from Abrams’s architecture be-
cause SCORE was proposed after Abrams’s work).
VELVET, on the other hand, has its �ltering mecha-
nism based on a metric selected by the user (or the cre-
ator of a given simulation). VELVET can work similarly
to what Abrams’s architecture does, if the metric chosen
is the Euclidean space distance in the synthetic world,
but it may work quite differently if some other metric is
chosen.

Additionally, Abrams’s architecture has the same
complex cell-splitting scheme that is present in SCORE,
and also with the same problems with regard to small
cell sizes, potentially overwhelming a given object that
is moving quickly. The architecture does allow one to
select a smaller region, which consists of a threshold

used to limit the depth in the octree that is processed.
Such a concept presents some complications, such as
who will in fact process the tree in all its depth to gener-
ate a coarse representation of deeper branches for those
who decide to stop some levels up in the tree. Some
overhead is also involved when it is decided that a given
area is to split in four smaller regions, and a number of
control messages must be sent to all objects in the origi-
nal area (which may be many because their count was
the reason for the split in the �rst place) to reallocate
them into the smaller areas (and hence new multicast
addresses to be subscribed to).

With regard to heterogeneous collaboration, in
Abrams’s architecture it is not guaranteed that the num-
ber of active objects in one’s AoI would be small
enough for a given station to handle. Let us suppose
that two participants, Pi and Pj, are located nearby. Sup-
pose further than both Pi and Pj have similar interest,
for instance, that in tier two they both choose only ac-
tive objects that have characteristic j. In the third tier,
let us suppose that both participants selected protocol
`. That means that all active objects with characteristic
j will be subscribed to by both Pi and Pj. Let us as-
sume, without loss of generality, that there are N active
objects in Pi and Pj’s AoI. Assume that Pi is a partici-
pant who has joined in the CVE through a slow station,
which is unable to handle N active objects. VELVET,
on the other hand, would allow Pi and Pj to individually
select, independently, those active objects that they
would choose to add to their AoI according to their
own metric. One can notice that VELVET has better
support for heterogeneous collaboration, which happens
mostly due to the fact that Abrams’s architecture is still
space based, even though it provides an elaborate three-
tier �ltering scheme.

A simple extension to Abrams’s proposal would be to
allow one’s AoI to shrink and expand, as described in
subsection 3.2.1. This would provide better heteroge-
neous support; however, one participant, Pi, in a slow
system would always subscribe to the active object that
passes through tiers two and three and that is closest to
its avatar in the virtual Euclidean space. That is not nec-
essarily the active object in which such a participant

576 PRESENCE: VOLUME 12, NUMBER 6

would have more interest. For instance, suppose that
participant Pi is chatting with the only active object it is
able to see/hear, Pj. Let us suppose that another active
object, Pk, has similar tier-two and tier-three character-
istics that Pj has. If Pk approaches Pi, this one may start
to see/hear Pk, rather than Pj; after all, at some point
both Pj and Pk would be in Pi’s AoI and such an AoI
would have to shrink to accommodate Pi’s processing
limitations. This would cause interruption of an on-go-
ing conversation, which is undesirable.

6 Collision Detect ion

Collision detection brings some extra challenges
to VELVET. It may happen that, due to the allowed
�exibility, it is possible to have users A and B, with A
geographically aware of B but B having no geographical
awareness of A, as shown in Figure 9. If users A and B
were to physically engage in collision, in the Euclidean
world, only one of the parties would be aware of this
collision. (Remember that each user selects the objects
that will be checked into the AoI based on its own
PVW, which is not necessarily related to the Euclidean
world.) The collision issue discussed previously is op-
tionally resolved through emergency collision packets
(ECPs) sent from the party that is able to detect colli-
sion to the party that is blind to it. In our example
shown in Figure 9, A would send a packet to B letting it
know about the collision. B can create a representation
of the object it is colliding with, so that it would be
aware of such an event. As disclosed in subsection 3.3,
each VELVET process signs up for some areas (similar
to SPLINE’s locales) and by doing so becomes aware of
users who are in those areas. An avatar Ai may compare
the list of users who are in a given area with the list of
users who have subscribed to the local transmission
channel of Ai. This comparison allows avatar Ai to de-
termine whether or not another given entity Aj is geo-
graphically aware of Ai, allowing it to know if an ECP
needs to be sent. Some other collision detection
schemes (Singhal, 1996) suggest the use of a server that
would know about the position and orientation of every

object so that it could inform objects about collisions.
VELVET, aiming at an environment with a very large
number of users, tries to avoid any kind of server, which
is why the collision detection scheme discussed previ-
ously is advantageous. A disadvantage of this scheme is
that the collisions between two objects that are not geo-
graphically aware of each other is not detected. Let us
assume that object C is aware and has subscribed to
both A and B. Object C may see A and B passing
through each other if A and B are not aware of one an-
other; that is, if A , C and B , C, but A ÷ B and B ÷

A as de�ned in subsection 3.2.4. The ECP scheme can
be extended to allow third-party collision detection, in
which case C could send an ECP to both A and B let-
ting them know about the collision. This extension
would still allow collisions to occur if both parties are
unaware of each other and no other entity is aware of
both A and B simultaneously. It is possible to choose a
mixed metric that also takes position into account so
that one object is more likely to “see” another one that
is in the neighborhood, if desired.

7 R ecov ery From Failures

Distributed systems should be able to recover as
smoothly as possible from isolated failures. Systems that
rely on a server, for instance, are challenged by the
problem that arises when a failure happens at the server
station. In some cases, this means that the session is im-
mediately compromised and possibly aborted. VELVET
does not use any server for transmission of data or man-
agement of the session. If one participant gets discon-
nected due to local failure, all that happens is that no
more updates from that participant will be multicasted.
VELVET processes that had subscribed to such a re-
source will eventually drop it from their lists after a cer-
tain time interval has elapsed without communication.
The procedure is not different from what happens when
a client actually chooses to leave the virtual environ-
ment. The major difference is that, before leaving, an
entity may let other interested parties know about it.

de Oliveira and Georganas 577

8 Conclusion

We have presented VELVET, an adaptive hybrid
architecture for VEry Large Virtual EnvironmenTs. VELVET
has been shown to be �exible, allowing a broad range of
LSVE, which would otherwise fail, to work gracefully.

However, one disadvantage over other architectures is
that VELVET makes use of a potentially larger number
of multicast addresses that lead to a potentially large
number of entries in routing tables of various routers.
More speci�cally, VELVET uses a multicast group
(MG) for each area as well as for each nonartifact ob-
ject; hence, the cost regarding MGs in VELVET has an
upper bound O(M 1 P) with M being the number of
areas in the world (locales) and P the number of partici-
pants. SPLINE’s lower bound MG is O(M), because
each locale has a multicast group. MASSIVE-2 has an
upper bound at O(M 1 P) as well when considering the
case in which every couple of objects creates a third-
party object. SCORE has a lower-bound MG usage at
O(C), where C is the number of cells, which is much
larger than the number of areas (locales) M.

It is worth mentioning that, even though VELVET
has an O(M 1 P) number of MGs, each router needs to
deal with only those subscribed for stations whose traf�c
goes through it. Part of the metric of a given station could
also include some cost measurements of the load in routers
in the neighborhood. This would lead a VELVET-based
system to drop MGs if some multicast table in some router
on the way to that station is overloaded. The adaptability
of VELVET and asymmetric presentation of the world for
the various participants allow such features without much
overhead because all changes can be performed unilaterally
by each participant.

It is also worth mentioning that, as technology
evolves, routers become faster and more powerful, and
such limitations tend to be diminished. Regarding the
number of multicast addresses available, IPv6 is increas-
ing their number to the same range of the total IPv4
unicast addresses available today.

One other way of seeing VELVET’s advantage is to
consider a precision parameter Pr, de�ned as the
amount of desired data divided by the amount of data
received. In other words, the rate of “unsolicited” traf�c

compared with the traf�c that is of interest for a given
user. In the ideal case, Pr would be 1. We discuss below
a case-by-case comparison of the various architectures.

c In an ad hoc scheme in which every user receives
updates from all objects (such as SIMNET), Pr

would reduce as the number of objects rise, ap-
proaching 0 at the extreme case.

c Locale-based solutions would have Pr decreasing as a
greater number of users join a single locale. This pa-
rameter would approach 0 in the extreme case as well.

c MASSIVE-2’s case would be similar to SPLINE’s,
potentially having Pr approaching 0 as well. Addi-
tionally, one could have special interest in an object
that is part of a (potentially recursive) third-party
object. This would mean that such a user would not
receive updates from that speci�c object unless the
third-party object boundary is crossed. This could
bring Pr to a value greater than 1.

c SCORE, also being space based, would suffer from
similar degradation of Pr because unsolicited data
from objects that happen to be outside of the AoI
may still be “subscribed” for, if the cell where they
are located is partially within the AoI.

c VELVET, on the other hand, would allow one to
subscribe only to those objects that one is really
interested in. Some objects of interest may be
dropped due to a lack of resources rather than the
inability of subscribing for them. Additionally, ob-
jects that get dropped will be those of lower priority
among all objects that one is aware of. VELVET
would hence optimize Pr to be as close to 1 as pos-
sible, taking into account the user’s processing
power, networking connection, and routing, as well
as the metric chosen by that user.

Future work includes the actual implementation of a
VELVET-compliant CVE, with further enhancements
included in what shall be called VELVET-2.

A ck now ledgments

We acknowledge the �nancial assistance of the Brazilian Min-
istry of Education Agency’s CAPES scholarship, the Ontario

578 PRESENCE: VOLUME 12, NUMBER 6

Research and Development Challenge Fund (Canada), The
Brazilian Intelligence Agency and the Brazilian Ministry of
Science and Technology’s PCI/LNCC fellowship. We also
thank Dr. Seok-Jong Yu for all the input and helpful discus-
sions about this paper, and Mojtaba Hosseini for reviewing
this text.

R eferences

Abrams, H. A. (1999). Extensible interest management for
scalable persistent distributed virtual environments. Unpub-
lished doctoral dissertation, Naval Postgraduate School,
Monterey, CA.

Abrams, H. A., Watsen, K., & Zyda, M. (1998). Three-tiered
interest management for large-scale virtual environments.
ACM Symposium on Virtual Reality Software and Technology
(VRST’98), 125–129.

Barrus, J. W., Waters, R. C., & Anderson, D. B. (1996). Lo-
cales: Supporting large multi-user virtual environments.
IEEE Computer Graphics and Applications, 16(6), 50 –57.

Benford, S., Bowers, J., Fahlen, L. E., Greenhalgh, C., Mari-
ani, J., & Rodden, T. (1995). Networked virtual reality and
cooperative work. Presence: Teleoperators and Virtual Envi-
ronments. 4(4), 364–386.

Daily, M., Howard, M., Jerald, J., Lee, C., Martin, K.,
McInnes, D., & Tinker, P. (2000). Distributed design re-
view in virtual environments. ACM Collaborative Virtual
Environments, 57–63.

Diot, C., & Gautier, L. (1999). A distributed architecture for
multiplayer interactive applications on the Internet. IEEE
Network, 13(4), 6–15.

Doppke, J. C., Heimbigner, D., & Wolf, A. L. (1998). Soft-
ware process modeling and execution within virtual envi-
ronments. ACM Trans. on Software Engineering and Meth-
odology, 7(1), 1–40.

Fernando, T., Murray, N., Tan, K., & Wilmalartne, P. (1999).
Software architecture for a constraint-based virtual environ-
ments. ACM VRST’99, 147–154.

Frécon, E., & Stenius, M. (1998). DIVE: A scalable network
architecture for distributed virtual environments. Distrib-
uted Systems Engineering Journal, 5(3), 91–100.

Greenhalgh, C. (1996). Dynamic embodied multicast groups in
MASSIVE-2. (Tech. Rep. No. NOTTCS-TT-96-8), De-
partment of Computer Science, The University of Notting-
ham, UK.

———. (1999). Large scale collaborative virtual environments.

Distinguished Dissertation Series. New York: Springer-Ver-
lag.

Greenhalgh, C., & Benford, S. (1995). MASSIVE: A virtual
reality system for tele-conferencing. ACM Transactions on
Computer Human Interfaces (TOCHI), 2(3), 239 –261.

———. (1999). Supporting rich and dynamic communication
in large scale collaborative virtual environments. Presence:
Teleoperators and Virtual Environments, 8(1), 14–35.

Greenhalgh, C., Purbrick, J., & Snowdon, D. (2000). Inside
MASSIVE-3: Flexible support for data consistency and
world structuring. ACM Collaborative Virtual Environ-
ments 2000 (CVE 2000), 119 –127.

Hagsand, O. (1996). Interactive multi-user virtual environ-
ments in the DIVE system. IEEE Multimedia, 3(1), 30 –39.

Hook, D. J. V., Rak, S. J., & Calvin, J. O. (1994). Ap-
proaches to relevance �ltering. Proceedings of the 11th DIS
Workshop on Standards for the Interoperability of Distributed
Simulation, 367–369.

Hindmarsh, J., Fraser, M., Heath, C., Benford, S., & Green-
halgh, C. (2000). Object-focused interaction in collabora-
tive virtual environments. ACM Transactions on Computer-
Human Interaction, 7(4), 477– 509.

Institute of Electrical and Electronics Engineers. (1993). In-
ternational Standard, ANSI/IEEE Standard 1278-1993,
Standard for Information Technology, Protocols for Dis-
tributed Interactive Simulation (March).

Kirner, T. G., Kirner, C., Kawamoto, A. L. S., Cantão, J.,
Pinto, A., & Wazlawick, R. S. (2001). Development of a
collaborative virtual environment for educational applica-
tions. ACM Web3D, 61–68.

Lety, E. (2000). Une architecture de comunication pour envi-
ronnements virtuels distribues à grande-echelle sur l’Internet.
Unpublished doctoral dissertation, L’Universite de Nice-
Sophia Antipolis, France.

Lety, E., Turletti, T., & Bacelli, F. (1999). Cell-based multi-
cast grouping in large-scale virtual environments (Tech.
Rep. No. 3729 INRIA).

Macedonia, M. (1995). A network software architecture for
large-scale virtual environments. Unpublished doctoral dis-
sertation, Naval Postgraduate School, Monterey, CA.

Macedonia, M., Zyda, M., Pratt, D., Barham, P., & Zeswitz,
S. (1994). NPSNET: A network software architecture for
large scale virtual environments. Presence: Teleoperators and
Virtual Environments, 3(4), 265–287.

Mil3, Inc. OPNET modeler — Simulation kernel manual (vol.
1 and 2).

Oliveira, J. C., Hosseini, M., Shirmohammadi, S., Cordea, M.,

de Oliveira and Georganas 579

Petriu, E., Petriu, D., & Georganas, N. D. (2000). Virtual
theater for industrial training: A collaborative virtual envi-
ronment. Proc. 4th World Multi-Conference on Circuits,
Systems, Communications & Computers (CSCC 2000),
294–299.

Oliveira, J. C., Shen, X., & Georganas, N. D. (2000). Collab-
orative virtual environment for industrial training and
e-commerce. IEEE VRTS 2000, 288.

Oliveira, J. C., Shirmohammadi, S., & Georganas, N. D.
(1999). Collaborative virtual environments standards: A
performance evaluation. IEEE DiS-RT’99, 14 –21.

Singhal, S. (1996). Effective remote modeling in large-scale

distributed simulation and visualization environments. Un-
published doctoral dissortation. Stanford University, Stan-
ford, CA.

Singhal, S., & Zyda, M. (1999). Networked virtual environ-
ments, design and implementation. New York: ACM Press/
Addison Wesley.

Wang, L., Wong, B., Shen, W., & Lang, S. (2002). A Java
3D-enabled cyber workspace. Communications of ACM,
45(11), 45– 49.

Waters, R. C., Anderson, D. B., & Schwenke, D. L. (1997).
The interactive sharing transfer protocol version 1.0 (MERL
Tech. Rep. No. TR-97-10).

580 PRESENCE: VOLUME 12, NUMBER 6

